Papers
Topics
Authors
Recent
Search
2000 character limit reached

BPS Chaos

Published 28 Jul 2024 in hep-th | (2407.19387v3)

Abstract: Black holes are chaotic quantum systems that are expected to exhibit random matrix statistics in their finite energy spectrum. Lin, Maldacena, Rozenberg and Shan (LMRS) have proposed a related characterization of chaos for the ground states of BPS black holes with finite area horizons. On a separate front, the "fuzzball program" has uncovered large families of horizon-free geometries that account for the entropy of holographic BPS systems, but only in situations with sufficient supersymmetry to exclude finite area horizons. The highly structured, non-random nature of these solutions seems in tension with strong chaos. We verify this intuition by performing analytic and numerical calculations of the LMRS diagnostic in the corresponding boundary quantum system. In particular we examine the 1/2 and 1/4-BPS sectors of $\mathcal{N}=4$ SYM, and the two charge sector of the D1-D5 CFT. We find evidence that these systems are only weakly chaotic, with a Thouless time determining the onset of chaos that grows as a power of $N$. In contrast, finite horizon area BPS black holes should be strongly chaotic, with a Thouless time of order one. In this case, finite energy chaotic states become BPS as $N$ is decreased through the recently discovered "fortuity" mechanism. Hence they can plausibly retain their strongly chaotic character.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.