Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Application of interpretable machine learning for cross-diagnostic inference on the ST40 spherical tokamak (2407.18741v1)

Published 26 Jul 2024 in physics.plasm-ph, physics.app-ph, and physics.ins-det

Abstract: Machine learning models are exceptionally effective in capturing complex non-linear relationships of high-dimensional datasets and making accurate predictions. However, their intrinsic black-box'' nature makes it difficult to interpret them or guaranteesafe behavior'' when deployed in high-risk applications such as feedback control, healthcare and finance. This drawback acts as a significant barrier to their wider application across many scientific and industrial domains where the interpretability of the model predictions is as important as accuracy. Leveraging the latest developments in interpretable machine learning, we develop a method to parameterise black-box'' models, effectively transforming them intogrey-box'' models. We apply this approach to plasma diagnostics by creating a parameterised synthetic Soft X-Ray imaging $-$ Thomson Scattering diagnostic, which predicts high temporal resolution electron temperature and density profiles from the measured soft X-ray emission. The grey-box'' model predictions are benchmarked against the trainedblack-box'' models as well as a diverse range of plasma conditions. Our model-agnostic approach can be applied to various machine learning architectures, enabling direct comparisons of model interpretations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.