Exactly-solvable self-trapping lattice walks. II. Lattices of arbitrary height (2407.18205v1)
Abstract: A growing self-avoiding walk (GSAW) is a walk on a graph that is directed, does not visit the same vertex twice, and has a trapped endpoint. We show that the generating function enumerating GSAWs on a half-infinite strip of finite height is rational, and we give a procedure to construct a combinatorial finite state machine that allows one to compute this generating function. We then modify this procedure to compute generating functions for GSAWs under two probabilistic models. We perform Monte Carlo simulations to estimate the expected length and displacement for GSAWs on the quarter plane, half plane, full plane, and half-infinite strips of bounded height for which we cannot compute the generating function. Finally, we prove that the generating functions for Greek key tours (GSAWs on a finite grid that visit every vertex) on a half-infinite strip of fixed height are also rational, allowing us to resolve several conjectures.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.