On the Symmetric Square Large Sieve for $\mathrm{PSL}_2 (\mathbb{Z} {[i]}) \backslash \mathrm{PSL}_2 (\mathbb{C}) $ and the Prime Geodesic Theorem for $ \mathrm{PSL}_2 (\mathbb{Z} {[i]}) \backslash \mathbb{H}^3 $
Abstract: In this paper, we improve the error term in the prime geodesic theorem for the Picard manifold $ \mathrm{PSL}_2 (\mathbb{Z} {[i]}) \backslash \mathbb{H}3 $. Instead of $ \mathrm{PSL}_2 (\mathbb{Z} {[i]}) \backslash \mathbb{H}3 $, we establish a spectral large sieve inequality for symmetric squares over $\mathrm{PSL}_2 (\mathbb{Z} {[i]}) \backslash \mathrm{PSL}_2 (\mathbb{C}) $. This enables us to improve the bound $ O (T{3+2/3+\varepsilon}) $ of Balkanova and Frolenkov into $ O (T{3+1/2+\varepsilon}) $ for the second moment of symmetric square $L$-functions over $ \mathrm{PSL}_2 (\mathbb{Z} {[i]}) \backslash \mathbb{H}3 $. The basic idea is to enlarge the spherical family $\Pi_c{0} (T)$ of Maass cusp forms on $ \mathrm{PSL}_2 (\mathbb{Z} {[i]}) \backslash \mathbb{H}3 $ into the family $ \Pi_c (T, \sqrt{T}) $ of cuspidal representations on $ \mathrm{PSL}_2 (\mathbb{Z} {[i]}) \backslash \mathrm{PSL}_2 (\mathbb{C}) $.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.