Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Stress Engineering of Thermal Fluctuation of Magnetization and Noise Spectra in Low Barrier Nanomagnets Used as Analog and Binary Stochastic Neurons (2407.16002v1)

Published 22 Jul 2024 in cond-mat.mes-hall

Abstract: A single-domain nanomagnet, shaped like a thin elliptical disk with small eccentricity, has a double well potential profile with two degenerate energy minima separated by a small barrier of a few kT (k = Boltzmann constant and T = absolute temperature). The two minima correspond to the magnetization pointing along the two mutually anti-parallel directions along the major axis. At room temperature, the magnetization fluctuates between the two minima mimicking telegraph noise. This makes the nanomagnet act as a "binary" stochastic neuron (BSN) with the neuronal state encoded in the magnetization orientation. If the nanomagnet is magnetostrictive, then the barrier can be depressed further by applying (electrically generated) uniaxial stress along the ellipse's major axis, thereby gradually eroding the double well shape. When the barrier almost vanishes, the magnetization begins to randomly assume any arbitrary orientation (not just along the major axis), making the nanomagnet act as an "analog" stochastic neuron (ASN). The magnetization fluctuation then begins to increasingly resemble white noise. The full-width-at-half-maximum (FWHM) of the noise auto-correlation function decreases with increasing stress, as the fluctuation gradually transforms from telegraph noise to white noise. The noise spectral density exhibits a 1/fbeta spectrum (at high frequencies) with "beta" decreasing with increasing stress, which is again characteristic of the transition from telegraph to white noise. Stress can thus not only reconfigure a BSN to an ASN, which has its own applications, but it can also perform "noise engineering", i.e., tune the auto-correlation function and power spectral density. That can have applications in signal processing.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.