Contextual modulation of language comprehension in a dynamic neural model of lexical meaning
Abstract: We propose and computationally implement a dynamic neural model of lexical meaning, and experimentally test its behavioral predictions. We demonstrate the architecture and behavior of the model using as a test case the English lexical item 'have', focusing on its polysemous use. In the model, 'have' maps to a semantic space defined by two continuous conceptual dimensions, connectedness and control asymmetry, previously proposed to parameterize the conceptual system for language. The mapping is modeled as coupling between a neural node representing the lexical item and neural fields representing the conceptual dimensions. While lexical knowledge is modeled as a stable coupling pattern, real-time lexical meaning retrieval is modeled as the motion of neural activation patterns between metastable states corresponding to semantic interpretations or readings. Model simulations capture two previously reported empirical observations: (1) contextual modulation of lexical semantic interpretation, and (2) individual variation in the magnitude of this modulation. Simulations also generate a novel prediction that the by-trial relationship between sentence reading time and acceptability should be contextually modulated. An experiment combining self-paced reading and acceptability judgments replicates previous results and confirms the new model prediction. Altogether, results support a novel perspective on lexical polysemy: that the many related meanings of a word are metastable neural activation states that arise from the nonlinear dynamics of neural populations governing interpretation on continuous semantic dimensions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.