Uniform asymptotic expansions for the zeros of parabolic cylinder functions (2407.13936v3)
Abstract: The real and complex zeros of the parabolic cylinder function $U(a,z)$ are studied. Asymptotic expansions for the zeros are derived, involving the zeros of Airy functions, and these are valid for $a$ positive or negative and large in absolute value, uniformly for unbounded $z$ (real or complex). The accuracy of the approximations of the complex zeros is then demonstrated with some comparative tests using a highly precise numerical algorithm for finding the complex zeros of the function.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.