Papers
Topics
Authors
Recent
2000 character limit reached

Projection-based model-order reduction via graph autoencoders suited for unstructured meshes

Published 18 Jul 2024 in cs.CE | (2407.13669v3)

Abstract: This paper presents the development of a graph autoencoder architecture capable of performing projection-based model-order reduction (PMOR) using a nonlinear manifold least-squares Petrov-Galerkin projection scheme. The architecture is particularly useful for advection-dominated flows, as it captures the underlying geometry of the modeled domain to provide a robust nonlinear mapping that can be leveraged in a PMOR setting. The presented graph autoencoder is constructed with a two-part process that consists of (1) generating a hierarchy of reduced graphs to emulate the compressive abilities of convolutional neural networks (CNNs) and (2) training a message passing operation at each step in the hierarchy of reduced graphs to emulate the filtering process of a CNN. The resulting framework provides improved flexibility over traditional CNN-based autoencoders because it is extendable to unstructured meshes. To highlight the capabilities of the proposed framework, which is named geometric deep least-squares Petrov-Galerkin (GD-LSPG), we benchmark the method on a one-dimensional Burgers' model with a structured mesh and demonstrate the flexibility of GD-LSPG by deploying it on two test cases for two-dimensional Euler equations that use an unstructured mesh. The proposed framework is more flexible than using a traditional CNN-based autoencoder and provides considerable improvement in accuracy for very low-dimensional latent spaces in comparison with traditional affine projections.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.