Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Non-zero block selector: A linear correlation coefficient measure for blocking-selection models (2407.13302v2)

Published 18 Jul 2024 in stat.ME

Abstract: Multiple-group data is widely used in genomic studies, finance, and social science. This study investigates a block structure that consists of covariate and response groups. It examines the block-selection problem of high-dimensional models with group structures for both responses and covariates, where both the number of blocks and the dimension within each block are allowed to grow larger than the sample size. We propose a novel strategy for detecting the block structure, which includes the block-selection model and a non-zero block selector (NBS). We establish the uniform consistency of the NBS and propose three estimators based on the NBS to enhance modeling efficiency. We prove that the estimators achieve the oracle solution and show that they are consistent, jointly asymptotically normal, and efficient in modeling extremely high-dimensional data. Simulations generate complex data settings and demonstrate the superiority of the proposed method. A gene-data analysis also demonstrates its effectiveness.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.