Papers
Topics
Authors
Recent
Search
2000 character limit reached

Structure-preserving approximation of the Cahn-Hilliard-Biot system

Published 17 Jul 2024 in math.NA, cs.NA, and math.AP | (2407.12349v1)

Abstract: In this work, we propose a structure-preserving discretisation for the recently studied Cahn-Hilliard-Biot system using conforming finite elements in space and problem-adapted explicit-implicit Euler time integration. We prove that the scheme preserves the thermodynamic structure, that is, the balance of mass and volumetric fluid content and the energy dissipation balance. The existence of discrete solutions is established under suitable growth conditions. Furthermore, it is shown that the algorithm can be realised as a splitting method, that is, decoupling the Cahn-Hilliard subsystem from the poro-elasticity subsystem, while the first one is nonlinear and the second subsystem is linear. The schemes are illustrated by numerical examples and a convergence test.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.