Papers
Topics
Authors
Recent
2000 character limit reached

Targeted Unlearning with Single Layer Unlearning Gradient

Published 16 Jul 2024 in cs.LG | (2407.11867v3)

Abstract: Machine unlearning methods aim to remove sensitive or unwanted content from trained models, but typically demand extensive model updates at significant computational cost while potentially degrading model performance on both related and unrelated tasks. We propose Single Layer Unlearning Gradient (SLUG) as an efficient method to unlearn targeted information by updating a single critical layer using a one-time gradient computation. SLUG uses layer importance and gradient alignment metrics to identify the optimal layer for targeted information removal while preserving the model utility. We demonstrate the effectiveness of SLUG for CLIP, Stable Diffusion, and vision-LLMs (VLMs) in removing concrete (e.g., identities and objects) and abstract concepts (e.g., artistic styles). On the UnlearnCanvas benchmark, SLUG achieves comparable unlearning performance to existing methods while requiring significantly less computational resources. Our proposed approach offers a practical solution for targeted unlearning that is computationally efficient and precise. Our code is available at https://github.com/CSIPlab/SLUG.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 7 likes about this paper.