Papers
Topics
Authors
Recent
2000 character limit reached

A Comparative Analysis of Interactive Reinforcement Learning Algorithms in Warehouse Robot Grid Based Environment (2407.11671v1)

Published 16 Jul 2024 in cs.RO and cs.HC

Abstract: The field of warehouse robotics is currently in high demand, with major technology and logistics companies making significant investments in these advanced systems. Training robots to operate in such complex environments is challenging, often requiring human supervision for adaptation and learning. Interactive reinforcement learning (IRL) is a key training methodology in human-computer interaction. This paper presents a comparative study of two IRL algorithms: Q-learning and SARSA, both trained in a virtual grid-simulation-based warehouse environment. To maintain consistent feedback rewards and avoid bias, feedback was provided by the same individual throughout the study.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.