Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

ECG Signal Denoising Using Multi-scale Patch Embedding and Transformers (2407.11065v1)

Published 12 Jul 2024 in eess.SP and cs.LG

Abstract: Cardiovascular disease is a major life-threatening condition that is commonly monitored using electrocardiogram (ECG) signals. However, these signals are often contaminated by various types of noise at different intensities, significantly interfering with downstream tasks. Therefore, denoising ECG signals and increasing the signal-to-noise ratio is crucial for cardiovascular monitoring. In this paper, we propose a deep learning method that combines a one-dimensional convolutional layer with transformer architecture for denoising ECG signals. The convolutional layer processes the ECG signal by various kernel/patch sizes and generates an embedding called multi-scale patch embedding. The embedding then is used as the input of a transformer network and enhances the capability of the transformer for denoising the ECG signal.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.