Deep ContourFlow: Advancing Active Contours with Deep Learning (2407.10696v1)
Abstract: This paper introduces a novel approach that combines unsupervised active contour models with deep learning for robust and adaptive image segmentation. Indeed, traditional active contours, provide a flexible framework for contour evolution and learning offers the capacity to learn intricate features and patterns directly from raw data. Our proposed methodology leverages the strengths of both paradigms, presenting a framework for both unsupervised and one-shot approaches for image segmentation. It is capable of capturing complex object boundaries without the need for extensive labeled training data. This is particularly required in histology, a field facing a significant shortage of annotations due to the challenging and time-consuming nature of the annotation process. We illustrate and compare our results to state of the art methods on a histology dataset and show significant improvements.
- S. Peng, W. Jiang, H. Pi, X. Li, H. Bao, and X. Zhou, “Deep snake for real-time instance segmentation,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 8530–8539, 2020, doi: 10.1109/CVPR42600.2020.00856.
- L. Castrejón, K. Kundu, R. Urtasun, and S. Fidler, “Annotating object instances with a polygon-RNN,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 4485–4493, 2017, doi: 10.1109/CVPR.2017.477.
- D. Acuna, H. Ling, A. Kar, and S. Fidler, “Efficient Interactive Annotation of Segmentation Datasets with Polygon-RNN++,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 859–868, 2018, doi: 10.1109/CVPR.2018.00096.
- H. Ali, S. Debleena and T. Demetri, “End-to-end trainable deep active contour models for automated image segmentation: Delineating buildings in aerial imagery,” in Computer Vision – ECCV 2020, Cham, 2020, pp. 730–746.
- M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” Int. J. Comput. Vis., vol. 1, no. 4, pp. 321–331, 1988, doi: 10.1007/BF00133570.
- R. Goldenberg, R. Kimmel, E. Rivlin, and M. Rudzsky, “Fast geodesic active contours,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 1682, no. 1, pp. 34–45, 1999, doi: 10.1007/3-540-48236-9_4.
- C. Xu and J. L. Prince, “Generalized gradient vector flow external forces for active contours,” Signal Processing, vol. 71, no. 2, pp. 131–139, 1998, doi: 10.1016/s0165-1684(98)00140-6.
- T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE Trans. Image Process., vol. 10, no. 2, pp. 266–277, 2001, doi: 10.1109/83.902291.
- C. Zimmer and J. C. Olivo-Marin, “Coupled parametric active contours,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 11, pp. 1838–1842, 2005, doi: 10.1109/TPAMI.2005.214.
- A. Dufour, V. Meas-Yedid, A. Grassart, and J. C. Olivo-Marin, “Automated quantification of cell endocytosis using active contours and wavelets,” Proc. Int. Conf. Pattern Recognit., pp. 25–28, 2008, doi: 10.1109/icpr.2008.4761748.
- Y. Y. Boykov, “Interactive Graph Cuts,” no. July, pp. 105–112, 2001.
- C. Rother, V. Kolmogorov, and A. Blake, “‘GrabCut,’” ACM Trans. Graph., vol. 23, no. 3, pp. 309–314, 2004, doi: 10.1145/1015706.1015720.
- A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in Neural Information Processing Systems, vol. 25.
- K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–14, 2015.
- C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception Architecture for Computer Vision,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-December, pp. 2818–2826, 2016, doi: 10.1109/CVPR.2016.308.
- X. Zhou and N. L. Zhang, “Deep Clustering with Features from Self-Supervised Pretraining,” 2022, [Online]. Available: http://arxiv.org/abs/2207.13364.
- W. Kim, A. Kanezaki, and M. Tanaka, “Unsupervised Learning of Image Segmentation Based on Differentiable Feature Clustering,” IEEE Trans. Image Process., vol. 29, pp. 8055–8068, 2020, doi: 10.1109/TIP.2020.3011269.
- R. Abdal, P. Zhu, N. J. Mitra, and P. Wonka, “Labels4Free: Unsupervised Segmentation using StyleGAN,” Proc. IEEE Int. Conf. Comput. Vis., pp. 13950–13959, 2021, doi: 10.1109/ICCV48922.2021.01371.
- C. I. Bercea, B. Wiestler, and D. Rueckert, “SPA : Shape-Prior Variational Autoencoders for Unsupervised Brain Pathology Segmentation,” pp. 1–14, 2022.
- N. Catalano and M. Matteucci, “Few Shot Semantic Segmentation: a review of methodologies and open challenges,” J. ACM, vol. 1, no. 1, 2023, [Online]. Available: http://arxiv.org/abs/2304.05832.
- Z. Tian, H. Zhao, M. Shu, Z. Yang, R. Li, and J. Jia, “Prior Guided Feature Enrichment Network for Few-Shot Segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 2, pp. 1050–1065, 2022, doi: 10.1109/TPAMI.2020.3013717.
- X. Zhang, Y. Wei, Y. Yang, and T. S. Huang, “SG-One: Similarity Guidance Network for one-shot Semantic Segmentation,” IEEE Trans. Cybern., vol. 50, no. 9, pp. 3855–3865, 2020, doi: 10.1109/TCYB.2020.2992433.
- N. Dong and E. P. Xing, “Few-shot semantic segmentation with prototype learning,” Br. Mach. Vis. Conf. 2018, BMVC 2018, pp. 1–13, 2019.
- C. Michaelis, I. Ustyuzhaninov, M. Bethge, and A. S. Ecker, “one-shot Instance Segmentation,” 2018, [Online]. Available: http://arxiv.org/abs/1811.11507.
- A. Shaban, S. Bansal, Z. Liu, I. Essa, and B. Boots, “One-shot learning for semantic segmentation,” Br. Mach. Vis. Conf. 2017, BMVC 2017, 2017, doi: 10.5244/c.31.167.
- K. Rakelly, E. Shelhamer, T. Darrell, A. Efros, and S. Levine, “Conditional networks for few-shot semantic segmentation,” 6th Int. Conf. Learn. Represent. ICLR 2018 - Work. Track Proc., no. 2017, pp. 2016–2019, 2018.
- O. Saha, Z. Cheng, and S. Maji, “GANORCON: Are Generative Models Useful for Few-shot Segmentation?,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2022-June, pp. 9981–9990, 2022, doi: 10.1109/CVPR52688.2022.00975.
- J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-Fei, “ImageNet: A large-scale hierarchical image database,” 2009 IEEE Conf. Comput. Vis. Pattern Recognit., pp. 248–255, 2010, doi: 10.1109/cvpr.2009.5206848.
- D. Mumford and J. Shah, “Optimal approximations by piecewise smooth functions and associated variational problems,” Commun. Pure Appl. Math., vol. 42, no. 5, pp. 577–685, 1989, doi: 10.1002/cpa.3160420503.
- J. L. Bentley and T. A. Ottmann, “Algorithms for Reporting and Counting Geometric Intersections,” IEEE Trans. Comput., vol. C–28, no. 9, pp. 643–647, 1979, doi: 10.1109/TC.1979.1675432.
- N. Codella, V. Rotemberg, P. Tschandl, M. Emre Celebi, S. Dusza, D. Gutman, B. Helba, A. Kalloo, K. Liopyris, M. Marchetti, H. Kittler, A. Halpern: “Skin Lesion Analysis Toward Melanoma Detection 2018: A Challenge Hosted by the International Skin Imaging Collaboration (ISIC)”, 2018; https://arxiv.org/abs/1902.03368
- G. Bueno, M. M. Fernandez-Carrobles, L. Gonzalez-Lopez, and O. Deniz, “Glomerulosclerosis identification in whole slide images using semantic segmentation,” Comput. Methods Programs Biomed., vol. 184, p. 105273, 2020, doi: 10.1016/j.cmpb.2019.105273.
- A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollar, “Panoptic segmentation,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2019-June, pp. 9396–9405, 2019, doi: 10.1109/CVPR.2019.00963.
- C. Zhang, G. Lin, F. Liu, R. Yao, and C. Shen, “CANET: Class-agnostic segmentation networks with iterative refinement and attentive few-shot learning,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2019-June, pp. 5212–5221, 2019, doi: 10.1109/CVPR.2019.00536.
- A. Kirillov, E. Mintun, N. Ravi, S. Whitehead, A. C. Berg, and P. Doll, “Segment anything,” Proc. IEEE/CVF International Conference on Computer Vision (ICCV), October 2023, pp. 4015–4026, doi: 10.1109/iccv51070.2023.00371.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.