Papers
Topics
Authors
Recent
Search
2000 character limit reached

Numerical Analysis of Penalty-based Ensemble Methods

Published 13 Jul 2024 in math.NA and cs.NA | (2407.10012v1)

Abstract: The chaotic nature of fluid flow and the uncertainties in initial conditions limit predictability. Small errors that occur in the initial condition can grow exponentially until they saturate at $\mathcal{O}$(1). Ensemble forecasting averages multiple runs with slightly different initial conditions and other data to produce more accurate results and extend the predictability horizon. However, they can be computationally expensive. We develop a penalty-based ensemble method with a shared coefficient matrix to reduce required memory and computational cost and thereby allow larger ensemble sizes. Penalty methods relax the incompressibility condition to decouple the pressure and velocity, reducing memory requirements. This report gives stability proof and an error estimate of the penalty-based ensemble method, extends it to the Navier-Stokes equations with random variables using Monte Carlo sampling, and validates the method's accuracy and efficiency with three numerical experiments.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.