Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Equiconsistency of the Minimalist Foundation with its classical version (2407.09940v2)

Published 13 Jul 2024 in math.LO

Abstract: The Minimalist Foundation, for short MF, was conceived by the first author with G. Sambin in 2005, and fully formalized in 2009, as a common core among the most relevant constructive and classical foundations for mathematics. To better accomplish its minimality, MF was designed as a two-level type theory, with an intensional level mTT, an extensional one emTT, and an interpretation of the latter into the first. Here, we first show that the two levels of MF are indeed equiconsistent by interpreting mTT into emTT. Then, we show that the classical extension emTTc is equiconsistent with emTT by suitably extending the G\"odel-Gentzen double-negation translation of classical logic in the intuitionistic one. As a consequence, MF turns out to be compatible with classical predicative mathematics `a la Weyl, contrary to the most relevant foundations for constructive mathematics. Finally, we show that the chain of equiconsistency results for MF can be straightforwardly extended to its impredicative version to deduce that Coquand-Huet's Calculus of Constructions equipped with basic inductive types is equiconsistent with its extensional and classical versions too.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.