Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Scale-Invariant Diagnostic Approach Towards Understanding Dynamics of Deep Neural Networks (2407.09585v1)

Published 12 Jul 2024 in cs.NE and cs.AI

Abstract: This paper introduces a scale-invariant methodology employing \textit{Fractal Geometry} to analyze and explain the nonlinear dynamics of complex connectionist systems. By leveraging architectural self-similarity in Deep Neural Networks (DNNs), we quantify fractal dimensions and \textit{roughness} to deeply understand their dynamics and enhance the quality of \textit{intrinsic} explanations. Our approach integrates principles from Chaos Theory to improve visualizations of fractal evolution and utilizes a Graph-Based Neural Network for reconstructing network topology. This strategy aims at advancing the \textit{intrinsic} explainability of connectionist AI systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.