Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Unsupervised Anomaly Detection Using Diffusion Trend Analysis for Display Inspection (2407.09578v2)

Published 12 Jul 2024 in cs.CV and cs.LG

Abstract: Reconstruction-based anomaly detection via denoising diffusion model has limitations in determining appropriate noise parameters that can degrade anomalies while preserving normal characteristics. Also, normal regions can fluctuate considerably during reconstruction, resulting in false detection. In this paper, we propose a method to detect anomalies by analysis of reconstruction trend depending on the degree of degradation, effectively solving the both problems that impede practical application in display inspection.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.