Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 31 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Comprehensive Convolutional Neural Network Architecture Design using Magnetic Skyrmion and Domain Wall (2407.08469v2)

Published 11 Jul 2024 in cond-mat.mes-hall

Abstract: Spintronic-based neuromorphic hardware offers high-density and rapid data processing at nanoscale lengths by leveraging magnetic configurations like skyrmion and domain walls. Here, we present the maximal hardware implementation of a convolutional neural network (CNN) based on a compact multi-bit skyrmion-based synapse and a hybrid CMOS domain wall-based circuit for activation and max-pooling functionalities. We demonstrate the micromagnetic design and operation of a circular bilayer skyrmion system mimicking a scalable artificial synapse, demonstrated up to 6-bit (64 states) with an ultra-low energy consumption of 0.87 fJ per state update. We further show that the synaptic weight modulation is achieved by the perpendicular current interaction with the labyrinth-maze like uniaxial anisotropy profile, inducing skyrmionic gyration, thereby enabling long-term potentiation (LTP) and long-term depression (LTD) operations. Furthermore, we present a simultaneous rectified linear (ReLU) activation and max pooling circuitry featuring a SOT-based domain wall ReLU with a power consumption of 4.73 $\mu$W. The ReLU function, stabilized by a parabolic uniaxial anisotropy profile, encodes domain wall positions into continuous resistance states coupled with the HSPICE circuit simulator. Our integrated skyrmion and domain wall-based spintronic hardware achieves 98.07% accuracy in convolutional neural network (CNN) based pattern recognition task, consuming 110 mW per image.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: