A Comprehensive Convolutional Neural Network Architecture Design using Magnetic Skyrmion and Domain Wall (2407.08469v2)
Abstract: Spintronic-based neuromorphic hardware offers high-density and rapid data processing at nanoscale lengths by leveraging magnetic configurations like skyrmion and domain walls. Here, we present the maximal hardware implementation of a convolutional neural network (CNN) based on a compact multi-bit skyrmion-based synapse and a hybrid CMOS domain wall-based circuit for activation and max-pooling functionalities. We demonstrate the micromagnetic design and operation of a circular bilayer skyrmion system mimicking a scalable artificial synapse, demonstrated up to 6-bit (64 states) with an ultra-low energy consumption of 0.87 fJ per state update. We further show that the synaptic weight modulation is achieved by the perpendicular current interaction with the labyrinth-maze like uniaxial anisotropy profile, inducing skyrmionic gyration, thereby enabling long-term potentiation (LTP) and long-term depression (LTD) operations. Furthermore, we present a simultaneous rectified linear (ReLU) activation and max pooling circuitry featuring a SOT-based domain wall ReLU with a power consumption of 4.73 $\mu$W. The ReLU function, stabilized by a parabolic uniaxial anisotropy profile, encodes domain wall positions into continuous resistance states coupled with the HSPICE circuit simulator. Our integrated skyrmion and domain wall-based spintronic hardware achieves 98.07% accuracy in convolutional neural network (CNN) based pattern recognition task, consuming 110 mW per image.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.