Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Hidden State Differential Private Mini-Batch Block Coordinate Descent for Multi-convexity Optimization (2407.08233v2)

Published 11 Jul 2024 in cs.LG

Abstract: We investigate the differential privacy (DP) guarantees under the hidden state assumption (HSA) for multi-convex problems. Recent analyses of privacy loss under the hidden state assumption have relied on strong assumptions such as convexity, thereby limiting their applicability to practical problems. In this paper, we introduce the Differential Privacy Mini-Batch Block Coordinate Descent (DP-MBCD) algorithm, accompanied by the privacy loss accounting methods under the hidden state assumption. Our proposed methods apply to a broad range of classical non-convex problems which are or can be converted to multi-convex problems, such as matrix factorization and neural network training. In addition to a tighter bound for privacy loss, our theoretical analysis is also compatible with proximal gradient descent and adaptive calibrated noise scenarios.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.