Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Coarse extrinsic curvature of Riemannian submanifolds (2407.08031v2)

Published 10 Jul 2024 in math.DG

Abstract: We introduce a novel concept of coarse extrinsic curvature for Riemannian submanifolds, inspired by Ollivier's notion of coarse Ricci curvature. This curvature is derived from the Wasserstein 1-distance between probability measures supported in the tubular neighborhood of a submanifold, providing new insights into the extrinsic curvature of isometrically embedded manifolds in Euclidean spaces. The framework also offers a method to approximate the mean curvature from statistical data, such as point clouds generated by a Poisson point process. This approach has potential applications in manifold learning and the study of metric embeddings, enabling the inference of geometric information from empirical data.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.