Coarse extrinsic curvature of Riemannian submanifolds (2407.08031v2)
Abstract: We introduce a novel concept of coarse extrinsic curvature for Riemannian submanifolds, inspired by Ollivier's notion of coarse Ricci curvature. This curvature is derived from the Wasserstein 1-distance between probability measures supported in the tubular neighborhood of a submanifold, providing new insights into the extrinsic curvature of isometrically embedded manifolds in Euclidean spaces. The framework also offers a method to approximate the mean curvature from statistical data, such as point clouds generated by a Poisson point process. This approach has potential applications in manifold learning and the study of metric embeddings, enabling the inference of geometric information from empirical data.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.