Papers
Topics
Authors
Recent
Search
2000 character limit reached

Graph Neural Networks and Deep Reinforcement Learning Based Resource Allocation for V2X Communications

Published 9 Jul 2024 in cs.LG and cs.NI | (2407.06518v2)

Abstract: In the rapidly evolving landscape of Internet of Vehicles (IoV) technology, Cellular Vehicle-to-Everything (C-V2X) communication has attracted much attention due to its superior performance in coverage, latency, and throughput. Resource allocation within C-V2X is crucial for ensuring the transmission of safety information and meeting the stringent requirements for ultra-low latency and high reliability in Vehicle-to-Vehicle (V2V) communication. This paper proposes a method that integrates Graph Neural Networks (GNN) with Deep Reinforcement Learning (DRL) to address this challenge. By constructing a dynamic graph with communication links as nodes and employing the Graph Sample and Aggregation (GraphSAGE) model to adapt to changes in graph structure, the model aims to ensure a high success rate for V2V communication while minimizing interference on Vehicle-to-Infrastructure (V2I) links, thereby ensuring the successful transmission of V2V link information and maintaining high transmission rates for V2I links. The proposed method retains the global feature learning capabilities of GNN and supports distributed network deployment, allowing vehicles to extract low-dimensional features that include structural information from the graph network based on local observations and to make independent resource allocation decisions. Simulation results indicate that the introduction of GNN, with a modest increase in computational load, effectively enhances the decision-making quality of agents, demonstrating superiority to other methods. This study not only provides a theoretically efficient resource allocation strategy for V2V and V2I communications but also paves a new technical path for resource management in practical IoV environments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of things for smart cities,” IEEE Internet of Things Journal, vol. 1, no. 1, pp. 22–32, 2014.
  2. S. Wan, J. Lu, P. Fan, Y. Shao, C. Peng, and K. B. Letaief, “Convergence Analysis and System Design for Federated Learning Over Wireless Networks,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 12, pp. 3622–3639, 2021.
  3. K. Abboud, H. A. Omar, and W. Zhuang, “Interworking of dsrc and cellular network technologies for v2x communications: A survey,” IEEE Transactions on Vehicular Technology, vol. 65, no. 12, pp. 9457–9470, 2016.
  4. J. B. Kenney, “Dedicated short-range communications (dsrc) standards in the united states,” Proceedings of the IEEE, vol. 99, no. 7, pp. 1162–1182, 2011.
  5. Q. Wu, S. Xia, P. Fan, Q. Fan, and Z. Li, “Velocity-Adaptive V2I Fair-Access Scheme Based on IEEE 802.11 DCF for Platooning Vehicles,” Sensors, vol. 18, no. 12, pp. 4198, 2018.
  6. N. Lu, N. Cheng, N. Zhang, X. Shen, and J. W. Mark, “Connected vehicles: Solutions and challenges,” IEEE Internet of Things Journal, vol. 1, no. 4, pp. 289–299, 2014.
  7. J. E. Siegel, D. C. Erb, and S. E. Sarma, “A survey of the connected vehicle landscape—architectures, enabling technologies, applications, and development areas,” IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 8, pp. 2391–2406, 2018.
  8. J. Wang, J. Liu, and N. Kato, “Networking and communications in autonomous driving: A survey,” IEEE Communications Surveys & Tutorials, vol. 21, no. 2, pp. 1243–1274, 2019.
  9. Q. Wu, S. Wang, H. Ge, P. Fan, Q. Fan, and K. B. Letaief, “Delay-sensitive Task Offloading in Vehicular Fog Computing-Assisted Platoons,” IEEE Transactions on Network and Service Management, vol. 21, no. 2, Apr. 2024, pp. 2012-2026.
  10. Q. Wu, S. Nie, P. Fan, H. Liu, Q. Fan, and Z. Li, “A Swarming Approach to Optimize the One-Hop Delay in Smart Driving Inter-Platoon Communications,” Sensors, vol. 18, no. 10, art. no. 3307, Oct. 2018.
  11. Q. Wu, Y. Zhao, Q. Fan, P. Fan, J. Wang, and C. Zhang, “Mobility-Aware Cooperative Caching in Vehicular Edge Computing Based on Asynchronous Federated and Deep Reinforcement Learning,” IEEE Journal of Selected Topics in Signal Processing, vol. 17, no. 1, pp. 66–81, Jan. 2023.
  12. S. Song, Z. Zhang, Q. Wu, P. Fan, and Q. Fan, “Joint Optimization of Age of Information and Energy Consumption in NR-V2X System Based on Deep Reinforcement Learning,” Sensors, vol. 24, no. 13, Art. no. 3448, 2024.
  13. K. Xiong, P. Fan, Z. Xu, H.-C. Yang, and K. B. Letaief, “Optimal Cooperative Beamforming Design for MIMO Decode-and-Forward Relay Channels,” IEEE Transactions on Signal Processing, vol. 62, no. 6, pp. 1476–1489, 2014.
  14. J. Liu, K. Xiong, D. W.K. Ng, P. Fan, Z. Zhong, and K. B. Letaief, “Max-Min Energy Balance in Wireless-Powered Hierarchical Fog-Cloud Computing Networks,” IEEE Transactions on Wireless Communications, vol. 19, no. 11, pp. 7064–7080, 2020.
  15. R. Jiang, K. Xiong, P. Fan, Y. Zhang, and Z. Zhong, “Power Minimization in SWIPT Networks With Coexisting Power-Splitting and Time-Switching Users Under Nonlinear EH Model,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8853–8869, 2019.
  16. Y. Guo, K. Xiong, Y. Lu, D. Wang, P. Fan, and K. B. Letaief, “Achievable Information Rate in Hybrid VLC-RF Networks With Lighting Energy Harvesting,” IEEE Transactions on Communications, vol. 69, no. 10, pp. 6852–6864, 2021.
  17. H. Zheng, K. Xiong, P. Fan, Z. Zhong, and K. B. Letaief, “Age of Information-Based Wireless Powered Communication Networks With Selfish Charging Nodes,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 5, pp. 1393–1411, 2021.
  18. Q. Wu, W. Wang, P. Fan, Q. Fan, J. Wang, and K. B. Letaief, “URLLC-Awared Resource Allocation for Heterogeneous Vehicular Edge Computing,” IEEE Transactions on Vehicular Technology, 2024, doi: 10.1109/TVT.2024.3370196.
  19. Q. Wu, W. Wang, P. Fan, Q. Fan, H. Zhu, and K. B. Letaief, “Cooperative Edge Caching Based on Elastic Federated and Multi-Agent Deep Reinforcement Learning in Next-Generation Networks,” IEEE Transactions on Network and Service Management, 2024, doi: 10.1109/TNSM.2024.3403842.
  20. Q. Wu and J. Zheng, “Performance Modeling and Analysis of the ADHOC MAC Protocol for VANETs,” in Proc. of IEEE International Conference on Communication (ICC’15), London, UK, Jun. 2015, pp. 3646-3652.
  21. J. Fan, Q. Wu, and J. Hao, “Optimal Deployment of Wireless Mesh Sensor Networks based on Delaunay Triangulations,” in Proc. of IEEE International Conference on Information, Networking and Automation (ICINA’10), Kunming, China, Oct. 2010, pp. 1–5.
  22. Q. Wu, H. Liu, C. Zhang, Q. Fan, Z. Li, and K. Wang, “Trajectory Protection Schemes Based on a Gravity Mobility Model in IoT,” Electronics, vol. 8, no. 148, Feb. 2019.
  23. Q. Wu, S. Shi, Z. Wan, Q. Fan, P. Fan, and C. Zhang, “Towards V2I Age-aware Fairness Access: A DQN Based Intelligent Vehicular Node Training and Test Method,” Chinese Journal of Electronics, vol. 32, no. 6, 2023, pp. 1230-1244.
  24. Q. Wu and J. Zheng, “Performance Modeling of IEEE 802.11 DCF Based Fair Channel Access for Vehicular-to-Roadside Communication in a Non-Saturated State,” in Proc. of IEEE International Conference on Communication (ICC’14), Sydney, Australia, Jun. 2014, pp. 2575-2580.
  25. Q. Wu, S. Xia, Q. Fan, and Z. Li, “Performance Analysis of IEEE 802.11p for Continuous Backoff Freezing in IoV,” Electronics, vol. 8, no. 12, Art. no. 1404, Dec. 2019.
  26. Q. Wu and J. Zheng, “Performance Modeling and Analysis of the ADHOC MAC Protocol for Vehicular Networks,” Wireless Networks, vol. 22, no. 3, Apr. 2016, pp. 799-812.
  27. Q. Wu and J. Zheng, “Performance Modeling of the IEEE 802.11p EDCA Mechanism for VANET,” in Proc. of IEEE Global Communications Conference (Globecom’14), Austin, USA, Dec. 2014, pp. 57-63.
  28. Q. Wu and J. Zheng, “Performance Modeling and Analysis of IEEE 802.11 DCF Based Fair Channel Access for Vehicle-to-Roadside Communication in a Non-Saturated State,” Wireless Networks, vol. 21, no. 1, Jan. 2015, pp. 1-11.
  29. M. H. C. Garcia, A. Molina-Galan, M. Boban, J. Gozalvez, B. Coll-Perales, T. Şahin, and A. Kousaridas, “A tutorial on 5g nr v2x communications,” IEEE Communications Surveys & Tutorials, vol. 23, no. 3, pp. 1972–2026, 2021.
  30. K. Sehla, T. M. T. Nguyen, G. Pujolle, and P. B. Velloso, “Resource allocation modes in c-v2x: From lte-v2x to 5g-v2x,” IEEE Internet of Things Journal, vol. 9, no. 11, pp. 8291–8314, 2022.
  31. S. A. Ashraf, R. Blasco, H. Do, G. Fodor, C. Zhang, and W. Sun, “Supporting vehicle-to-everything services by 5g new radio release-16 systems,” IEEE Communications Standards Magazine, vol. 4, no. 1, pp. 26–32, 2020.
  32. J. Fan, S. Yin, Q. Wu, and F. Gao, “Study on Refined Deployment of Wireless Mesh Sensor Network,” in Proc. of IEEE International Conference on Wireless Communications, Networking and Mobile Computing (WICOM’10), Chengdu, China, Jul. 2010, pp. 370-375.
  33. D. Zhai, R. Zhang, L. Cai, B. Li, and Y. Jiang, “Energy-efficient user scheduling and power allocation for noma-based wireless networks with massive iot devices,” IEEE Internet of Things Journal, vol. 5, no. 3, pp. 1857–1868, 2018.
  34. X. Chen, J. Lu, P. Fan, and K. B. Letaief, “Massive MIMO Beamforming With Transmit Diversity for High Mobility Wireless Communications,” IEEE Access, vol. 5, pp. 23032–23045, 2017.
  35. Y. Xiao, J. Liu, J. Wu, and N. Ansari, “Leveraging deep reinforcement learning for traffic engineering: A survey,” IEEE Communications Surveys & Tutorials, vol. 23, no. 4, pp. 2064–2097, 2021.
  36. Z. Zhao, S. Bu, T. Zhao, Z. Yin, M. Peng, Z. Ding, and T. Q. S. Quek, “On the design of computation offloading in fog radio access networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 7, pp. 7136–7149, 2019.
  37. D. Long, Q. Wu, Q. Fan, P. Fan, Z. Li, and J. Fan, “A Power Allocation Scheme for MIMO-NOMA and D2D Vehicular Edge Computing Based on Decentralized DRL,” Sensors, vol. 23, no. 7, Art. no. 3449, 2023.
  38. C. Guo, L. Liang, and G. Y. Li, “Resource allocation for low-latency vehicular communications: An effective capacity perspective,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 4, pp. 905–917, 2019.
  39. M. Zhang and Y. Chen, “Link prediction based on graph neural networks,” in Neural Information Processing Systems, 2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:3573161
  40. T. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” ArXiv, vol. abs/1609.02907, 2016. [Online]. Available: https://api.semanticscholar.org/CorpusID:3144218
  41. M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep learning architecture for graph classification,” in AAAI Conference on Artificial Intelligence, 2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:4770492
  42. W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,” in Neural Information Processing Systems, 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:4755450
  43. K. Wang, F. R. Yu, L. Wang, J. Li, N. Zhao, Q. Guan, B. Li, and Q. Wu, “Interference Alignment with Adaptive Power Allocation in Full-Duplex-Enabled Small Cell Networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 3, Mar. 2019.
  44. W. Sun, E. G. Ström, F. Brännström, K. C. Sou, and Y. Sui, “Radio resource management for d2d-based v2v communication,” IEEE Transactions on Vehicular Technology, vol. 65, no. 8, pp. 6636–6650, 2016.
  45. Q. Wei, L. Wang, Z. Feng, and Z. Ding, “Wireless resource management in lte-u driven heterogeneous v2x communication networks,” IEEE Transactions on Vehicular Technology, vol. 67, no. 8, pp. 7508–7522, 2018.
  46. P. Wang, B. Di, H. Zhang, K. Bian, and L. Song, “Cellular v2x communications in unlicensed spectrum: Harmonious coexistence with vanet in 5g systems,” IEEE Transactions on Wireless Communications, vol. 17, no. 8, pp. 5212–5224, 2018.
  47. X. Li, L. Ma, Y. Xu, and R. Shankaran, “Resource allocation for d2d-based v2x communication with imperfect csi,” IEEE Internet of Things Journal, vol. 7, no. 4, pp. 3545–3558, 2020.
  48. F. Abbas, P. Fan, and Z. Khan, “A novel low-latency v2v resource allocation scheme based on cellular v2x communications,” IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 6, pp. 2185–2197, 2019.
  49. W. Chen, L. Dai, K. B. Letaief, and Z. Cao, “A unified cross-layer framework for resource allocation in cooperative networks,” IEEE Transactions on Wireless Communications, vol. 7, no. 8, pp. 3000–3012, 2008.
  50. Y. J. Zhang and K. B. Letaief, “Adaptive resource allocation and scheduling for multiuser packet-based OFDM networks,” in 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577), vol. 5, 2004, pp. 2949–2953.
  51. K. Xiong, C. Chen, G. Qu, P. Fan, and K. B. Letaief, “Group cooperation with optimal resource allocation in wireless powered communication networks,” IEEE Transactions on Wireless Communications, vol. 16, no. 6, pp. 3840–3853, 2017.
  52. T. Li, P. Fan, Z. Chen, and K. B. Letaief, “Optimum transmission policies for energy harvesting sensor networks powered by a mobile control center,” IEEE Transactions on Wireless Communications, vol. 15, no. 9, pp. 6132–6145, 2016.
  53. J. Zhang, P. Fan, and K. B. Letaief, “Network coding for efficient multicast routing in wireless ad-hoc networks,” IEEE Transactions on Communications, vol. 56, no. 4, pp. 598–607, 2008.
  54. Z. Yao, J. Jiang, P. Fan, Z. Cao, and V. O. K. Li, “A neighbor-table-based multipath routing in ad hoc networks,” in Proc. 57th IEEE Semiannual Vehicular Technology Conference, 2003. VTC 2003-Spring, vol. 3, 2003, pp. 1739–1743.
  55. H. Ye, G. Y. Li, and B.-H. F. Juang, “Deep reinforcement learning based resource allocation for v2v communications,” IEEE Transactions on Vehicular Technology, vol. 68, no. 4, pp. 3163–3173, 2019.
  56. X. Wang, Y. Zhang, R. Shen, Y. Xu, and F.-C. Zheng, “Drl-based energy-efficient resource allocation frameworks for uplink noma systems,” IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7279–7294, 2020.
  57. X. Zhang, M. Peng, S. Yan, and Y. Sun, “Deep-reinforcement-learning-based mode selection and resource allocation for cellular v2x communications,” IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6380–6391, 2020.
  58. Y. Yuan, G. Zheng, K. Wong, and K. B. Letaief, “Meta-reinforcement learning based resource allocation for dynamic v2x communications,” IEEE Transactions on Vehicular Technology, vol. 70, pp. 8964–8977, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:237600245
  59. M. Lee, G. Yu, and G. Y. Li, “Graph embedding-based wireless link scheduling with few training samples,” IEEE Transactions on Wireless Communications, vol. 20, no. 4, pp. 2282–2294, 2021.
  60. T. Chen, X. Zhang, M. You, G. Zheng, and S. Lambotharan, “A gnn-based supervised learning framework for resource allocation in wireless iot networks,” IEEE Internet of Things Journal, vol. 9, no. 3, pp. 1712–1724, 2022.
  61. J. Guo and C. Yang, “Learning power allocation for multi-cell-multi-user systems with heterogeneous graph neural networks,” IEEE Transactions on Wireless Communications, vol. 21, no. 2, pp. 884–897, 2022.
  62. “3rd generation partnership project; technical specification group radio access network; evolved universal terrestrial radio access (e-utra); further advancements for e-utra physical layer aspects (release 9).” [Online]. Available: https://api.semanticscholar.org/CorpusID:16652630
  63. M. I. Ashraf, M. Bennis, C. Perfecto, and W. Saad, “Dynamic proximity-aware resource allocation in vehicle-to-vehicle (v2v) communications,” in 2016 IEEE Globecom Workshops (GC Wkshps), 2016, pp. 1–6.
Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.