Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A modified Korteweg-de Vries equation soliton gas under the nonzero background (2407.05384v1)

Published 7 Jul 2024 in nlin.SI

Abstract: In this paper, we consider a soliton gas of the focusing modified Korteweg-de Vries generated from the $N$-soliton solutions under the nonzero background. The spectral soliton density is chosen on the pure imaginary axis, excluding the branch cut $\Sigma_{c}=\left[-i, i\right]$. In the limit $N\to\infty$, we establish the Riemann-Hilbert problem of the soliton gas. Using the Deift-Zhou nonlinear steepest-descent method, this soliton gas under the nonzero background will decay to a constant background as $x\to+\infty$, while its asymptotics as $x\to-\infty$ can be expressed with a Riemann-Theta function, attached to a Riemann surface with genus-two. We also analyze the large $t$ asymptotics over the entire spatial domain, which is divided into three distinct asymptotic regions depending on the ratio $\xi=\frac{x}{t}$. Using the similar method, we provide the leading-order asymptotic behaviors for these three regions and exhibit the dynamics of large $t$ asymptotics.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube