Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Symmetric Linear Arc Monadic Datalog and Gadget Reductions (2407.04924v3)

Published 6 Jul 2024 in math.RA, cs.CC, and cs.LO

Abstract: A Datalog program solves a constraint satisfaction problem (CSP) if and only if it derives the goal predicate precisely on the unsatisfiable instances of the CSP. There are three Datalog fragments that are particularly important for finite-domain constraint satisfaction: arc monadic Datalog, linear Datalog, and symmetric linear Datalog, each having good computational properties. We consider the fragment of Datalog where we impose all of these restrictions simultaneously, i.e., we study \emph{symmetric linear arc monadic (slam) Datalog}. We characterise the CSPs that can be solved by a slam Datalog program as those that have a gadget reduction to a particular Boolean constraint satisfaction problem. We also present exact characterisations in terms of a homomorphism duality (which we call \emph{unfolded caterpillar duality}), and in universal-algebraic terms (using known minor conditions, namely the existence of quasi Maltsev operations and $k$-absorptive operations of arity $nk$}, for all $n,k \geq 1$). Our characterisations also imply that the question whether a given finite-domain CSP can be expressed by a slam Datalog program is decidable.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube