Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Improving Knowledge Distillation in Transfer Learning with Layer-wise Learning Rates (2407.04871v1)

Published 5 Jul 2024 in cs.LG and cs.CV

Abstract: Transfer learning methods start performing poorly when the complexity of the learning task is increased. Most of these methods calculate the cumulative differences of all the matched features and then use them to back-propagate that loss through all the layers. Contrary to these methods, in this work, we propose a novel layer-wise learning scheme that adjusts learning parameters per layer as a function of the differences in the Jacobian/Attention/Hessian of the output activations w.r.t. the network parameters. We applied this novel scheme for attention map-based and derivative-based (first and second order) transfer learning methods. We received improved learning performance and stability against a wide range of datasets. From extensive experimental evaluation, we observed that the performance boost achieved by our method becomes more significant with the increasing difficulty of the learning task.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.