Papers
Topics
Authors
Recent
2000 character limit reached

A Unified Learn-to-Distort-Data Framework for Privacy-Utility Trade-off in Trustworthy Federated Learning

Published 5 Jul 2024 in cs.LG, cs.AI, and cs.CR | (2407.04751v2)

Abstract: In this paper, we first give an introduction to the theoretical basis of the privacy-utility equilibrium in federated learning based on Bayesian privacy definitions and total variation distance privacy definitions. We then present the \textit{Learn-to-Distort-Data} framework, which provides a principled approach to navigate the privacy-utility equilibrium by explicitly modeling the distortion introduced by the privacy-preserving mechanism as a learnable variable and optimizing it jointly with the model parameters. We demonstrate the applicability of our framework to a variety of privacy-preserving mechanisms on the basis of data distortion and highlight its connections to related areas such as adversarial training, input robustness, and unlearnable examples. These connections enable leveraging techniques from these areas to design effective algorithms for privacy-utility equilibrium in federated learning under the \textit{Learn-to-Distort-Data} framework.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.