Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Simulation-based Calibration of Uncertainty Intervals under Approximate Bayesian Estimation (2407.04659v1)

Published 5 Jul 2024 in stat.ME and stat.AP

Abstract: The mean field variational Bayes (VB) algorithm implemented in Stan is relatively fast and efficient, making it feasible to produce model-estimated official statistics on a rapid timeline. Yet, while consistent point estimates of parameters are achieved for continuous data models, the mean field approximation often produces inaccurate uncertainty quantification to the extent that parameters are correlated a posteriori. In this paper, we propose a simulation procedure that calibrates uncertainty intervals for model parameters estimated under approximate algorithms to achieve nominal coverages. Our procedure detects and corrects biased estimation of both first and second moments of approximate marginal posterior distributions induced by any estimation algorithm that produces consistent first moments under specification of the correct model. The method generates replicate datasets using parameters estimated in an initial model run. The model is subsequently re-estimated on each replicate dataset, and we use the empirical distribution over the re-samples to formulate calibrated confidence intervals of parameter estimates of the initial model run that are guaranteed to asymptotically achieve nominal coverage. We demonstrate the performance of our procedure in Monte Carlo simulation study and apply it to real data from the Current Employment Statistics survey.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.