Papers
Topics
Authors
Recent
2000 character limit reached

Connecting the Hamiltonian structure to the QAOA performance and energy landscape

Published 5 Jul 2024 in quant-ph | (2407.04435v1)

Abstract: Quantum computing holds promise for outperforming classical computing in specialized applications such as optimization. With current Noisy Intermediate Scale Quantum (NISQ) devices, only variational quantum algorithms like the Quantum Alternating Operator Ansatz (QAOA) can be practically run. QAOA is effective for solving Quadratic Unconstrained Binary Optimization (QUBO) problems by approximating Quantum Annealing via Trotterization. Successful implementation on NISQ devices requires shallow circuits, influenced by the number of variables and the sparsity of the augmented interaction matrix. This paper investigates the necessary sparsity levels for augmented interaction matrices to ensure solvability with QAOA. By analyzing the Max-Cut problem with varying sparsity, we provide insights into how the Hamiltonian density affects the QAOA performance. Our findings highlight that, while denser matrices complicate the energy landscape, the performance of QAOA remains largely unaffected by sparsity variations. This study emphasizes the algorithm's robustness and potential for optimization tasks on near-term quantum devices, suggesting avenues for future research in enhancing QAOA for practical applications.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.