Monochromatic Sumsets in Countable Colourings of Abelian Groups (2407.03938v1)
Abstract: Fern\'andez-Bret\'on, Sarmiento and Vera showed that whenever a direct sum of sufficiently many copies of ${\mathbb Z}_4$, the cyclic group of order 4, is countably coloured there are arbitrarily large finite sets $X$ whose sumsets $X+X$ are monochromatic. They asked if the elements of order 4 are necessary, in the following strong sense: if $G$ is an abelian group having no elements of order 4, is it always the case there there is a countable colouring of $G$ for which there is not even a monochromatic sumset $X+X$ with $X$ of size 2? Our aim in this short note is to show that this is indeed the case.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.