Papers
Topics
Authors
Recent
2000 character limit reached

A Survey of Data Synthesis Approaches (2407.03672v1)

Published 4 Jul 2024 in cs.LG and cs.AI

Abstract: This paper provides a detailed survey of synthetic data techniques. We first discuss the expected goals of using synthetic data in data augmentation, which can be divided into four parts: 1) Improving Diversity, 2) Data Balancing, 3) Addressing Domain Shift, and 4) Resolving Edge Cases. Synthesizing data are closely related to the prevailing machine learning techniques at the time, therefore, we summarize the domain of synthetic data techniques into four categories: 1) Expert-knowledge, 2) Direct Training, 3) Pre-train then Fine-tune, and 4) Foundation Models without Fine-tuning. Next, we categorize the goals of synthetic data filtering into four types for discussion: 1) Basic Quality, 2) Label Consistency, and 3) Data Distribution. In section 5 of this paper, we also discuss the future directions of synthetic data and state three direction that we believe is important: 1) focus more on quality, 2) the evaluation of synthetic data, and 3) multi-model data augmentation.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.