Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 46 tok/s Pro
Gemini 2.5 Flash 148 tok/s Pro
Kimi K2 170 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

M5: A Whole Genome Bacterial Encoder at Single Nucleotide Resolution (2407.03392v1)

Published 3 Jul 2024 in q-bio.QM, cs.AI, and cs.LG

Abstract: A linear attention mechanism is described to extend the context length of an encoder only transformer, called M5 in this report, to a multi-million single nucleotide resolution foundation model pretrained on bacterial whole genomes. The linear attention mechanism used approximates a full quadratic attention mechanism tightly and has a simple and lightweight implementation for the use case when the key-query embedding dimensionality is low. The M5-small model is entirely trained and tested on one A100 GPU with 40gb of memory up to 196K nucleotides during training and 2M nucleotides during testing. We test the performance of the M5-small model and record notable improvements in performance as whole genome bacterial sequence lengths are increased as well as demonstrating the stability of the full multi-head attention approximation used as sequence length is increased.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.