Papers
Topics
Authors
Recent
2000 character limit reached

C-ShipGen: A Conditional Guided Diffusion Model for Parametric Ship Hull Design (2407.03333v1)

Published 10 May 2024 in eess.SY, cs.CE, cs.LG, and cs.SY

Abstract: Ship design is a complex design process that may take a team of naval architects many years to complete. Improving the ship design process can lead to significant cost savings, while still delivering high-quality designs to customers. A new technology for ship hull design is diffusion models, a type of generative artificial intelligence. Prior work with diffusion models for ship hull design created high-quality ship hulls with reduced drag and larger displaced volumes. However, the work could not generate hulls that meet specific design constraints. This paper proposes a conditional diffusion model that generates hull designs given specific constraints, such as the desired principal dimensions of the hull. In addition, this diffusion model leverages the gradients from a total resistance regression model to create low-resistance designs. Five design test cases compared the diffusion model to a design optimization algorithm to create hull designs with low resistance. In all five test cases, the diffusion model was shown to create diverse designs with a total resistance less than the optimized hull, having resistance reductions over 25%. The diffusion model also generated these designs without retraining. This work can significantly reduce the design cycle time of ships by creating high-quality hulls that meet user requirements with a data-driven approach.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.