Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Do Quantum Neural Networks have Simplicity Bias? (2407.03266v1)

Published 3 Jul 2024 in quant-ph, cs.AI, cs.LG, and physics.app-ph

Abstract: One hypothesis for the success of deep neural networks (DNNs) is that they are highly expressive, which enables them to be applied to many problems, and they have a strong inductive bias towards solutions that are simple, known as simplicity bias, which allows them to generalise well on unseen data because most real-world data is structured (i.e. simple). In this work, we explore the inductive bias and expressivity of quantum neural networks (QNNs), which gives us a way to compare their performance to those of DNNs. Our results show that it is possible to have simplicity bias with certain QNNs, but we prove that this type of QNN limits the expressivity of the QNN. We also show that it is possible to have QNNs with high expressivity, but they either have no inductive bias or a poor inductive bias and result in a worse generalisation performance compared to DNNs. We demonstrate that an artificial (restricted) inductive bias can be produced by intentionally restricting the expressivity of a QNN. Our results suggest a bias-expressivity tradeoff. Our conclusion is that the QNNs we studied can not generally offer an advantage over DNNs, because these QNNs either have a poor inductive bias or poor expressivity compared to DNNs.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.