Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 61 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Low-variance observable estimation with informationally-complete measurements and tensor networks (2407.02923v2)

Published 3 Jul 2024 in quant-ph

Abstract: We propose a method for providing unbiased estimators of multiple observables with low statistical error by utilizing informationally (over)complete measurements and tensor networks. The technique consists of an observable-specific classical optimization of the measurement data based on tensor networks leading to low-variance estimations. Compared to other observable estimation protocols based on classical shadows and measurement frames, our approach offers several advantages: (i) it can be optimized to provide lower statistical error, resulting in a reduced measurement budget to achieve a specified estimation precision; (ii) it scales to a large number of qubits due to the tensor network structure; (iii) it can be applied to any measurement protocol with measurement operators that have an efficient representation in terms of tensor networks. We benchmark the method through various numerical examples, including spin and chemical systems in both infinite and finite statistics scenarios, and show how optimal estimation can be found even when we use tensor networks with low bond dimensions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: