Representation learning with CGAN for casual inference (2407.02825v1)
Abstract: Conditional Generative Adversarial Nets (CGAN) is often used to improve conditional image generation performance. However, there is little research on Representation learning with CGAN for causal inference. This paper proposes a new method for finding representation learning functions by adopting the adversarial idea. We apply the pattern of CGAN and theoretically emonstrate the feasibility of finding a suitable representation function in the context of two distributions being balanced. The theoretical result shows that when two distributions are balanced, the ideal representation function can be found and thus can be used to further research.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.