Predicting Trust Dynamics with Dynamic SEM in Human-AI Cooperation
Abstract: Humans' trust in AI constitutes a pivotal element in fostering a synergistic relationship between humans and AI. This is particularly significant in the context of systems that leverage AI technology, such as autonomous driving systems and human-robot interaction. Trust facilitates appropriate utilization of these systems, thereby optimizing their potential benefits. If humans over-trust or under-trust an AI, serious problems such as misuse and accidents occur. To prevent over/under-trust, it is necessary to predict trust dynamics. However, trust is an internal state of humans and hard to directly observe. Therefore, we propose a prediction model for trust dynamics using dynamic structure equation modeling, which extends SEM that can handle time-series data. A path diagram, which shows causalities between variables, is developed in an exploratory way and the resultant path diagram is optimized for effective path structures. Over/under-trust was predicted with 90\% accuracy in a drone simulator task,, and it was predicted with 99\% accuracy in an autonomous driving task. These results show that our proposed method outperformed the conventional method including an auto regression family.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.