Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

The reverse mathematics of the pigeonhole hierarchy (2407.01236v1)

Published 1 Jul 2024 in math.LO and cs.LO

Abstract: The infinite pigeonhole principle for $k$ colors ($\mathsf{RT}k$) states, for every $k$-partition $A_0 \sqcup \dots \sqcup A{k-1} = \mathbb{N}$, the existence of an infinite subset~$H \subseteq A_i$ for some~$i < k$. This seemingly trivial combinatorial principle constitutes the basis of Ramsey's theory, and plays a very important role in computability and proof theory. In this article, we study the infinite pigeonhole principle at various levels of the arithmetical hierarchy from both a computability-theoretic and reverse mathematical viewpoint. We prove that this hierarchy is strict over~$\mathsf{RCA}_0$ using an elaborate iterated jump control construction, and study its first-order consequences. This is part of a large meta-mathematical program studying the computational content of combinatorial theorems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.