Papers
Topics
Authors
Recent
2000 character limit reached

Neural Conditional Probability for Uncertainty Quantification (2407.01171v2)

Published 1 Jul 2024 in cs.LG, math.ST, stat.ME, stat.ML, and stat.TH

Abstract: We introduce Neural Conditional Probability (NCP), an operator-theoretic approach to learning conditional distributions with a focus on statistical inference tasks. NCP can be used to build conditional confidence regions and extract key statistics such as conditional quantiles, mean, and covariance. It offers streamlined learning via a single unconditional training phase, allowing efficient inference without the need for retraining even when conditioning changes. By leveraging the approximation capabilities of neural networks, NCP efficiently handles a wide variety of complex probability distributions. We provide theoretical guarantees that ensure both optimization consistency and statistical accuracy. In experiments, we show that NCP with a 2-hidden-layer network matches or outperforms leading methods. This demonstrates that a a minimalistic architecture with a theoretically grounded loss can achieve competitive results, even in the face of more complex architectures.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.