Papers
Topics
Authors
Recent
2000 character limit reached

Ranking by Lifts: A Cost-Benefit Approach to Large-Scale A/B Tests (2407.01036v2)

Published 1 Jul 2024 in stat.ME, cs.LG, stat.AP, and stat.ML

Abstract: A/B testers that conduct large-scale tests often prioritize lifts as the main outcome metric and want to be able to control costs resulting from false rejections of the null. This work develops a decision-theoretic framework for maximizing profits subject to false discovery rate (FDR) control. We build an empirical Bayes solution for the problem via a greedy knapsack approach. We derive an oracle rule based on ranking the ratio of expected lifts and the cost of wrong rejections using the local false discovery rate (lfdr) statistic. Our oracle decision rule is valid and optimal for large-scale tests. Further, we establish asymptotic validity for the data-driven procedure and demonstrate finite-sample validity in experimental studies. We also demonstrate the merit of the proposed method over other FDR control methods. Finally, we discuss an application to data collected by experiments on the Optimizely platform.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: