Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Deep learning quantum Monte Carlo for solids (2407.00707v1)

Published 30 Jun 2024 in physics.chem-ph, cond-mat.str-el, and physics.comp-ph

Abstract: Deep learning has deeply changed the paradigms of many research fields. At the heart of chemical and physical sciences is the accurate ab initio calculation of many-body wavefunction, which has become one of the most notable examples to demonstrate the power of deep learning in science. In particular, the introduction of deep learning into quantum Monte Carlo (QMC) has significantly advanced the frontier of ab initio calculation, offering a universal tool to solve the electronic structure of materials and molecules. Deep learning QMC architectures were initial designed and tested on small molecules, focusing on comparisons with other state-of-the-art ab initio methods. Methodological developments, including extensions to real solids and periodic models, have been rapidly progressing and reported applications are fast expanding. This review covers the theoretical foundation of deep learning QMC for solids, the neural network wavefunction ansatz, and various of other methodological developments. Applications on computing energy, electron density, electric polarization, force and stress of real solids are also reviewed. The methods have also been extended to other periodic systems and finite temperature calculations. The review highlights the potentials and existing challenges of deep learning QMC in materials chemistry and condensed matter physics.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube