Papers
Topics
Authors
Recent
2000 character limit reached

A Fast Learning-Based Surrogate of Electrical Machines using a Reduced Basis (2406.18990v1)

Published 27 Jun 2024 in cs.LG

Abstract: A surrogate model approximates the outputs of a solver of Partial Differential Equations (PDEs) with a low computational cost. In this article, we propose a method to build learning-based surrogates in the context of parameterized PDEs, which are PDEs that depend on a set of parameters but are also temporal and spatial processes. Our contribution is a method hybridizing the Proper Orthogonal Decomposition and several Support Vector Regression machines. This method is conceived to work in real-time, thus aimed for being used in the context of digital twins, where a user can perform an interactive analysis of results based on the proposed surrogate. We present promising results on two use cases concerning electrical machines. These use cases are not toy examples but are produced an industrial computational code, they use meshes representing non-trivial geometries and contain non-linearities.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.