Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

The nonexistence of unicorns and many-sorted Löwenheim-Skolem theorems (2406.18912v1)

Published 27 Jun 2024 in math.LO and cs.LO

Abstract: Stable infiniteness, strong finite witnessability, and smoothness are model-theoretic properties relevant to theory combination in satisfiability modulo theories. Theories that are strongly finitely witnessable and smooth are called strongly polite and can be effectively combined with other theories. Toledo, Zohar, and Barrett conjectured that stably infinite and strongly finitely witnessable theories are smooth and therefore strongly polite. They called counterexamples to this conjecture unicorn theories, as their existence seemed unlikely. We prove that, indeed, unicorns do not exist. We also prove versions of the L\"owenheim-Skolem theorem and the {\L}o\'s-Vaught test for many-sorted logic.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.