Simulating The U.S. Senate: An LLM-Driven Agent Approach to Modeling Legislative Behavior and Bipartisanship (2406.18702v1)
Abstract: This study introduces a novel approach to simulating legislative processes using LLM-driven virtual agents, focusing on the U.S. Senate Intelligence Committee. We developed agents representing individual senators and placed them in simulated committee discussions. The agents demonstrated the ability to engage in realistic debate, provide thoughtful reflections, and find bipartisan solutions under certain conditions. Notably, the simulation also showed promise in modeling shifts towards bipartisanship in response to external perturbations. Our results indicate that this LLM-driven approach could become a valuable tool for understanding and potentially improving legislative processes, supporting a broader pattern of findings highlighting how LLM-based agents can usefully model real-world phenomena. Future works will focus on enhancing agent complexity, expanding the simulation scope, and exploring applications in policy testing and negotiation.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.