Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The power of prediction: spatiotemporal Gaussian process modeling for predictive control in slope-based wavefront sensing (2406.18275v1)

Published 26 Jun 2024 in astro-ph.IM

Abstract: Time-delay error is a significant error source in adaptive optics (AO) systems. It arises from the latency between sensing the wavefront and applying the correction. Predictive control algorithms reduce the time-delay error, providing significant performance gains, especially for high-contrast imaging. However, the predictive controller's performance depends on factors such as the WFS type, the measurement noise, the AO system's geometry, and the atmospheric conditions. This work studies the limits of prediction under different imaging conditions through spatiotemporal Gaussian process models. The method provides a predictive reconstructor that is optimal in the least-squares sense, conditioned on the fixed times series of WFS data and our knowledge of the atmosphere. We demonstrate that knowledge is power in predictive AO control. With an SHS-based extreme AO instrument, perfect knowledge of Frozen Flow evolution (wind and Cn2 profile) leads to a reduction of the residual wavefront phase variance up to a factor of 3.5 compared to a non-predictive approach. If there is uncertainty in the profile or evolution models, the gain is more modest. Still, assuming that only effective wind speed is available (without direction) led to reductions in variance by a factor of 2.3. We also study the value of data for predictive filters by computing the experimental utility for different scenarios to answer questions such as: How many past data frames should the prediction filter consider, and is it always most advantageous to use the most recent data? We show that within the scenarios considered, more data consistently increases prediction accuracy. Further, we demonstrate that given a computational limitation on how many past frames we can use, an optimized selection of $n$ past frames leads to a 10-15% additional improvement in RMS over using the n latest consecutive frames of data.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.