Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Refining Potential Energy Surface through Dynamical Properties via Differentiable Molecular Simulation (2406.18269v2)

Published 26 Jun 2024 in physics.chem-ph and physics.comp-ph

Abstract: Recently, machine learning potentials (MLP) largely enhances the reliability of molecular dynamics, but its accuracy is limited by the underlying $\textit{ab initio}$ methods. A viable approach to overcome this limitation is to refine the potential by learning from experimental data, which now can be done efficiently using modern automatic differentiation technique. However, potential refinement is mostly performed using thermodynamic properties, leaving the most accessible and informative dynamical data (like spectroscopy) unexploited. In this work, through a comprehensive application of adjoint and gradient truncation methods, we show that both memory and gradient explosion issues can be circumvented in many situations, so the dynamical property differentiation is well-behaved. Consequently, both transport coefficients and spectroscopic data can be used to improve the density functional theory based MLP towards higher accuracy. Essentially, this work contributes to the solution of the inverse problem of spectroscopy by extracting microscopic interactions from vibrational spectroscopic data.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: