Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Efficient Lagrangian averaging with exponential filters (2406.18243v2)

Published 26 Jun 2024 in physics.flu-dyn and physics.ao-ph

Abstract: Lagrangian averaging is a valuable tool for the analysis and modelling of multiscale processes in fluid dynamics. The numerical computation of Lagrangian (time) averages from simulation data is challenging, however. It can be carried out by tracking a large number of particles or, following a recent approach, by solving a dedicated set of partial differential equations (PDEs). Both approaches are computationally demanding because they require an entirely new computation for each time at which the Lagrangian mean fields are desired. We overcome this drawback by developing a PDE-based method that delivers Lagrangian mean fields for all times through the single solution of evolutionary PDEs. This allows for an on-the-fly implementation, in which Lagrangian averages are computed along with the dynamical variables. This is made possible by the use of a special class of temporal filters whose kernels are sums of exponential functions. We focus on two specific kernels involving one and two exponential functions. We implement these in the rotating shallow-water model and demonstrate their effectiveness at filtering out large-amplitude Poincar\'e waves while retaining the salient features of an underlying slowly evolving turbulent flow.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.