Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Minimax-robust estimation problems for stationary stochastic sequences (2406.17917v1)

Published 25 Jun 2024 in math.ST and stat.TH

Abstract: This survey provides an overview of optimal estimation of linear functionals which depend on the unknown values of a stationary stochastic sequence. Based on observations of the sequence without noise as well as observations of the sequence with a stationary noise, estimates could be obtained. Formulas for calculating the spectral characteristics and the mean-square errors of the optimal estimates of functionals are derived in the case of spectral certainty, where spectral densities of the sequences are exactly known. In the case of spectral uncertainty, where spectral densities of the sequences are not known exactly while sets of admissible spectral densities are given, the minimax-robust method of estimation is applied. Formulas that determine the least favourable spectral densities and the minimax spectral characteristics of estimates are presented for some special classes of admissible spectral densities.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.