Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Quasiprobability as a resource for memory reduction in stochastic process modeling (2406.17292v2)

Published 25 Jun 2024 in quant-ph

Abstract: In stochastic modeling, the excess entropy -- the mutual information shared between a processes past and future -- represents the fundamental lower bound of the memory needed to simulate its dynamics. However, this bound cannot be saturated by either classical machines or their enhanced quantum counterparts. Simulating a process fundamentally requires us to store more information in the present than what is shared between past and future. Here we consider a hypothetical generalization of hidden Markov models beyond classical and quantum models, referred as n-machines, that allow for negative quasiprobabilities. We show that under the collision entropy measure of information, the minimal memory of such models can equalize the excess entropy. Our results hint negativity as a necessary resource for memory-advantaged stochastic simulation -- mirroring similar interpretations in various other quantum information tasks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: