Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Canonical form of matrix factorizations from Fukaya category of surface (2406.16648v1)

Published 24 Jun 2024 in math.RT, math.AC, and math.SG

Abstract: This paper concerns homological mirror symmetry for the pair-of-pants surface (A-side) and the non-isolated surface singularity $xyz=0$ (B-side). Burban-Drozd classified indecomposable maximal Cohen-Macaulay modules on the B-side. We prove that higher-multiplicity band-type modules correspond to higher-rank local systems over closed geodesics on the A-side, generalizing our previous work for the multiplicity one case. This provides a geometric interpretation of the representation tameness of the band-type maximal Cohen-Macaulay modules, as every indecomposable object is realized as a geometric object. We also present an explicit canonical form of matrix factorizations of $xyz$ corresponding to Burban-Drozd's canonical form of band-type maximal Cohen-Macaulay modules. As applications, we give a geometric interpretation of algebraic operations such as AR translation and duality of maximal Cohen-Macaulay modules as well as certain mapping cone operations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.