Papers
Topics
Authors
Recent
Search
2000 character limit reached

Clustering and Meta-Analysis Using a Mixture of Dependent Linear Tail-Free Priors

Published 22 Jun 2024 in stat.ME | (2406.15912v1)

Abstract: We propose a novel nonparametric Bayesian approach for meta-analysis with event time outcomes. The model is an extension of linear dependent tail-free processes. The extension includes a modification to facilitate (conditionally) conjugate posterior updating and a hierarchical extension with a random partition of studies. The partition is formalized as a Dirichlet process mixture. The model development is motivated by a meta-analysis of cancer immunotherapy studies. The aim is to validate the use of relevant biomarkers in the design of immunotherapy studies. The hypothesis is about immunotherapy in general, rather than about a specific tumor type, therapy and marker. This broad hypothesis leads to a very diverse set of studies being included in the analysis and gives rise to substantial heterogeneity across studies

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.